Reinforcement Learning Based Artificial Immune Classifier
نویسندگان
چکیده
منابع مشابه
Reinforcement Learning Based Artificial Immune Classifier
One of the widely used methods for classification that is a decision-making process is artificial immune systems. Artificial immune systems based on natural immunity system can be successfully applied for classification, optimization, recognition, and learning in real-world problems. In this study, a reinforcement learning based artificial immune classifier is proposed as a new approach. This a...
متن کاملArtificial Immune Classifier Based on ELLipsoidal Regions (AICELL) †
Pattern classification is a central problem in machine learning, with a wide array of applications, and rule-based classifiers are one of the most prominent approaches. Among these classifiers, Incremental Rule Learning algorithms combine the advantages of classic Pittsburg and Michigan approaches, while, on the other hand, classifiers using fuzzy membership functions often result in systems wi...
متن کاملA New Classifier Based on Resource Limited Artificial Immune Systems
This paper presents a new tool for supervised learning, modeled on resource limited Artificial Immune Systems. A supervised learning system, it is self-regulatory, efficient, and stable under a wide range of user-set parameters. Its performance is comparable to well-established classifiers on a variety of testbeds, including the iris data, the diabetes classification problem, the ionosphere pro...
متن کاملAnticipatory Learning Classifier Systems and Factored Reinforcement Learning
Factored Reinforcement Learning (frl) is a new technique to solve Factored Markov Decision Problems (fmdps) when the structure of the problem is not known in advance. Like Anticipatory Learning Classifier Systems (alcss), it is a model-based Reinforcement Learning approach that includes generalization mechanisms in the presence of a structured domain. In general, frl and alcss are explicit, sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2013
ISSN: 1537-744X
DOI: 10.1155/2013/581846